Task Analysis HCI Lecture 5

David Aspinall

Informatics, University of Edinburgh

5th October 2007

Outline

Overview

Task Decomposition

Knowledge Based Analyses

Conclusion

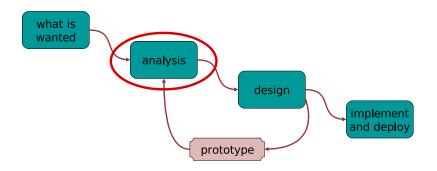
Exercise

References

Outline

Overview

Task Decomposition


Knowledge Based Analyses

Conclusion

Exercise

References

Focus on Analysis

- Interaction design driven by what is wanted
- Analysis of tasks and knowledge informs:
 - functionality and objects offered in interface;
 - organisation (layout, grouping, navigation).

- ► Task Analysis is the study of the way people perform their jobs. Aim is to determine:
 - what they do
 - what things they use
 - what they must know

- ► Task Analysis is the study of the way people perform their jobs. Aim is to determine:
 - what they do
 - what things they use
 - what they must know
- Task analysis gathers both declarative and procedural knowledge
 - Declarative: objects and relationships
 - Procedural: task sequences, goals and subgoals
 - Also dependencies and constraints

- ► Task Analysis is the study of the way people perform their jobs. Aim is to determine:
 - what they do
 - what things they use
 - what they must know
- Task analysis gathers both declarative and procedural knowledge
 - Declarative: objects and relationships
 - Procedural: task sequences, goals and subgoals
 - Also dependencies and constraints
- Originally a tool for writing training manuals, now used more widely in business process analysis

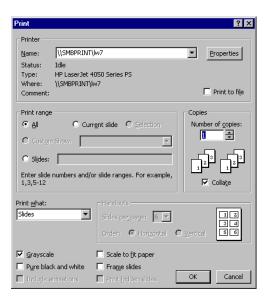
- ► Task Analysis is the study of the way people perform their jobs. Aim is to determine:
 - what they do
 - what things they use
 - what they must know
- Task analysis gathers both declarative and procedural knowledge
 - Declarative: objects and relationships
 - Procedural: task sequences, goals and subgoals
 - Also dependencies and constraints
- Originally a tool for writing training manuals, now used more widely in business process analysis
- Emphasises users+existing tasks, rather than desired system as in systems analysis
- Emphasises observable behaviour and whole job, rather than internal mental state and "unit" tasks as in cognitive models

Example Task: Cleaning House

To clean the house:

```
get the vacuum cleaner out;
fix the appropriate attachments;
clean the rooms;
when the dust bag gets full, empty it;
put the vacuum cleaner and tools away.
```

Example Task: Cleaning House


To clean the house:

```
get the vacuum cleaner out;
fix the appropriate attachments;
clean the rooms;
when the dust bag gets full, empty it;
put the vacuum cleaner and tools away.
```

We must know about:

vacuum cleaners, their attachments, dust bags, cupboards, rooms.

Example Layout

- Items related by proximity and boundaries
- Layout suggests order, but doesn't impose it

- Task decomposition
 - splitting task into (ordered) subtasks
- Knowledge-based techniques
 - what the user knows about the task
 - and how it is organised
- Entity/object based analysis
 - relationships between objects, actions and the people who perform them

- Task decomposition
 - splitting task into (ordered) subtasks
- Knowledge-based techniques
 - what the user knows about the task
 - and how it is organised
- Entity/object based analysis
 - relationships between objects, actions and the people who perform them
 - gardener digs

- Task decomposition
 - splitting task into (ordered) subtasks
- Knowledge-based techniques
 - what the user knows about the task
 - and how it is organised
- Entity/object based analysis
 - relationships between objects, actions and the people who perform them
 - gardener digs soil

- Task decomposition
 - splitting task into (ordered) subtasks
- Knowledge-based techniques
 - what the user knows about the task
 - and how it is organised
- Entity/object based analysis
 - relationships between objects, actions and the people who perform them
 - gardener digs soil using

- Task decomposition
 - splitting task into (ordered) subtasks
- Knowledge-based techniques
 - what the user knows about the task
 - and how it is organised
- Entity/object based analysis
 - relationships between objects, actions and the people who perform them
 - gardener digs soil using spade

- Task decomposition
 - splitting task into (ordered) subtasks
- Knowledge-based techniques
 - what the user knows about the task
 - and how it is organised
- Entity/object based analysis
 - relationships between objects, actions and the people who perform them
 - gardener digs soil using spade
 - cf database design
 - not covered further here

General Method

The general method for Task Analysis is:

- observe
- collect unstructured lists of words and actions
- organize using notation or diagrams

Outline

Overview

Task Decomposition

Knowledge Based Analyses

Conclusion

Exercise

References

Task Decomposition

- Aims:
 - describe the actions people do
 - structure them within task subtask hierarchy
 - describe order of subtasks
- Variants:
 - Hierarchical Task Analysis (HTA)
 - the most common
 - ConcurTaskTrees (CTT), by Paternò (2000)
 - uses LOTOS temporal operators
- Procedural task knowledge elicitation techniques:
 - Observation, re-enactment
 - Ask about procedures and triggers (pre-conditions)
 - "What happens if X goes wrong?"
 - Sorting steps into appropriate orders

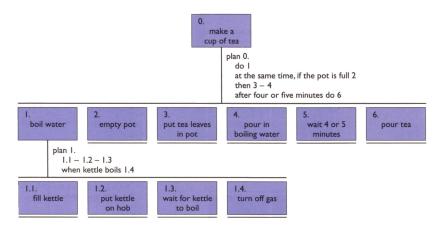
Textual HTA

Hierarchy description

- 0. clean the house
 - 1. get the vacuum cleaner out
 - 2. get the appropriate attachment
 - 3. clean the rooms
 - 3.1 clean the hall
 - 3.2 clean the living rooms
 - 3.3 clean the bedrooms
 - 4. empty the dust bag
 - 5. put vacuum cleaner and attachments away

Textual HTA

Hierarchy description


- 0. clean the house
 - 1. get the vacuum cleaner out
 - 2. get the appropriate attachment
 - 3. clean the rooms
 - 3.1 clean the hall
 - 3.2 clean the living rooms
 - 3.3 clean the bedrooms
 - 4. empty the dust bag
 - 5. put vacuum cleaner and attachments away

Plans

Plan 0: do 1, 2, 3, 5 in order; when dust bag full, do 4

Plan 3: do 3.1, 3.2, 3.3 in any order, as needed

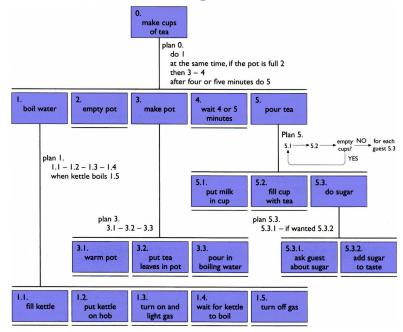
Diagrammatic HTA

[Dix et al, p. 515]

Refinement

```
How to check or improve the initial HTA?

Some heuristics are:


paired actions where is "turn on gas"?

restructure generate task "make pot"

balance is "pour tea" simpler than "make pot"?

generalise make one cup ... or more
```

Refined HTA for making tea

Types of plan

- sequence 1.1 then 1.2 then 1.3
- optional if the pot is full 2
- wait when kettle boils, do 1.4
- cycles do 5.1 5.2 while there are still empty cups
- parallel do 1; at the same time ...
- discretionary do any of 1.3.1, 1.3.2 or 1.3.3 in any order

Most plans use several of these.

Waiting can be considered:

- a task for "busy" waits, e.g. making tea
- part of the plan end is the event, e.g. email reply received

Outline

Overview

Task Decomposition

Knowledge Based Analyses

Conclusion

Exercise

References

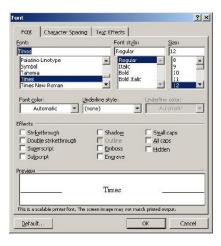
- Aim to understand knowledge required for a task
 - provide training material, how-to manuals;
 - take advantage of common knowledge across tasks.

- Aim to understand knowledge required for a task
 - provide training material, how-to manuals;
 - take advantage of common knowledge across tasks.
- Focus on:

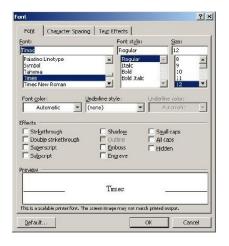
objects used in task actions performed

- Aim to understand knowledge required for a task
 - provide training material, how-to manuals;
 - take advantage of common knowledge across tasks.
- Focus on:

objects used in task actions performed


- Use taxonomies:
 - represent levels of abstraction
 - organisation (grouping) depends on purpose

- Aim to understand knowledge required for a task
 - provide training material, how-to manuals;
 - take advantage of common knowledge across tasks.
- Focus on:


objects used in task actions performed

- Use taxonomies:
 - represent levels of abstraction
 - organisation (grouping) depends on purpose
- Declarative knowledge elicitation techniques:
 - established convention, existing documentation
 - asking users to list objects; card sorting
 - structured interviews, listing nouns and verbs

Laddering

Laddering

- Start subject off with a seed item: type faces
- 2. Move around task domain knowledge using prompts:
 - To move down: Can you give examples of type faces?
 - To move across: What alternatives are there to type faces for changing the appearance of text?
 - To move up: What have Times Roman, Helvetica in common?

Car Control Taxonomy

motor controls steering steering wheel, indicators direct ignition, accelerator, foot brake engine gearing clutch, gear stick lights external headlights, hazard lights internal courtesy light wash/wipe wipers front wipers, rear wipers washers front washers, rear washers heating temperature control, air direction, fan, rear screen heater parking hand brake, door lock radio numerous!

Car Control Taxonomy

motor controls steering steering wheel, indicators direct ignition, accelerator, foot brake engine gearing clutch, gear stick external headlights, hazard lights lights internal courtesy light wash/wipe front front wipers, front washers rear rear wipers, rear washers heating temperature control, air direction, fan, rear screen heater parking hand brake, door lock radio numerous!

Task Descriptive Hierarchy (TDH)

- Task Analysis for Knowledge Description (TAKD) uses three types of branches in TDH taxonomies:
 - XOR object in exactly one branch
 - AND object must be in both
 - OR can be in one, many or none

function XOR wipers front wipers, rear wipers washers front washers, rear washers position XOR front front wipers, front washers rear rear wipers, rear washers

Larger TDH example

N.B. / | { indicates branch type; operator names AND, XOR, OR not usually used

Examining TDH taxonomies

- ► The uniqueness rule: can the diagram distinguish every object?
 - If not, may consider adding extra classifiers

Examining TDH taxonomies

- ► The uniqueness rule: can the diagram distinguish every object?
 - If not, may consider adding extra classifiers
- Taxonomies for actions are similar, e.g.

```
kitchen job XOR
|____ preparation beating, mixing
|___ cooking frying, boiling, baking
|___ dining pouring, eating, drinking
```

Examining TDH taxonomies

- ► The uniqueness rule: can the diagram distinguish every object?
 - If not, may consider adding extra classifiers
- Taxonomies for actions are similar, e.g.

```
kitchen job XOR
|____ preparation beating, mixing
|___ cooking frying, boiling, baking
|___ dining pouring, eating, drinking
```

- Compare taxonomies to restructure/find omissions
- Objects often more easily observed than tasks!
- Notice: TDH decomposes by similarity, HTA by how-to.

Abstraction and cuts

- After producing detailed taxonomy, we can cut to yield an abstract view.
- e.g. cutting above shape and below dining, plate becomes:

```
kitchen
item/function{preparation,dining}/
```

- This is a term in the Knowledge Representation Grammar (KRG)
- Composite KRG term: beating in a mixing bowl is kitchen job(preparation) using a kitchen item/function{preparation}/
- Terms and sequences in KRG may provide tools for further analysis.

Outline

Overview

Task Decomposition

Knowledge Based Analyses

Conclusion

Exercise

References

Applying Task Analysis

- For documentation: How To manual
 - useful for novices
 - assumes all tasks known
- Requirements capture and design
 - lifts focus from system to use
 - suggests candidates for automation
 - may uncover user's conceptual model
- Detailed interface design
 - taxonomies suggest menu layout
 - object/action lists suggest interface objects
 - task frequency guides default choices
 - existing task sequences guide dialogue design

Task analysis can be continually iterated to improve and enhance.

Outline

Overview

Task Decomposition

Knowledge Based Analyses

Conclusion

Exercise

References

Exercise

- Investigate the use of cluster analysis to classify objects into groups.
 - Cluster analysis works by constructing a matrix of object similarities using a distance measure.
 - The distance measure may be a psychological (user-driven) estimate of relatedness determined by experiment or interview.
- Derive a taxonomy from existing menu and dialogue layouts in a common application (e.g., word processor, image editor)
- Perform a cluster analysis on the basic tasks and objects, and examine whether it agrees with the application layout.

Outline

Overview

Task Decomposition

Knowledge Based Analyses

Conclusion

Exercise

References

References

🦫 Fabio Paternò. Model-Based Design and Evaluation of Interactive Applications.

Springer-Verlag, 2000.

See also:

- Dix et al, Chapter 15, and further reading recommendations there.
- More about CTT at http: //giove.cnuce.cnr.it/ConcurTaskTrees.html