
tic tac toe

Tic Tac Toe
(also know as: Noughts and Crosses, X and Zero)

This is one of the favorites when it comes to recursion. All
the more pleasurable if you can program it yourself without
reading this article. It isn't all that difficult if you give it a
few days of thought. So give it a shot before you read the
solutions I've provided.

< Prev Recursion Index Next >

The game is itself quite simple, and very very famous. If you
are one of the - less fortunate - who never played pencil-
paper games in the middle of your 3rd grade Math class, or
equivalently, if you're 72 and have forgotten how to play
your favorite game of tic tac toe, read the intro to the game.
Otherwise, take a sheet from somewhere, start scribbling and
work on it - before you go on to read the rest of this article.
Good Luck!

The Game

A 3x3 grid. 2 players. One player plays 'X', the other plays
'0'. The players take turns. Each marks a free location with
his/her symbol (X or 0). The first player to get 3 of his
symbols in a straight line, either vertically, horizontally or
diagonally, wins. If all 9 locations are filled without any
winning line, the game is drawn. E.g.:

The player marking 'X' in the above game has won, since he
managed to get 3 X's in a diagonal straight line.

The Program

Before we start off on the program, we should have a general
idea of what we want it to do. So, let me make a few
suggestions...
The program should support the following game modes:-

 Human vs Human

0 X

0 X

X 0 X

 Human vs Computer
 Computer vs Computer

The first mode is trivial. Let's deal with the second mode.
Once we are able to program the second mode, i.e., once we
are able to make the Computer play a game, the third mode
should become a trivial problem, and can be easily
accomplished. In this article, I am not going to discuss
anything about the interface and such (I leave this juicy stuff
to you), instead, I concentrate only on the logic.

First, let's look at it broadly. There could be two approaches
the computer could take to play a game-
1) plan through the entire game at the start of the game itself,
or
2) decide upon the best move at every turn.
Planning the entire game is not worth from many points of
view. Besides, there's nothing wrong with selecting the best
move at every turn 'just in case' it messed up somewhere
along the way and needs to start over. So, the computer
should decide upon the move looking only at the future, and
ignoring the past. To come to think of it, this is how we
humans think - what has happened has happened, I'll just try
my best from now on.

Okay, so the Computer is going to select the best move at
every one of its turns. If we have to program it to 'select', then
obviously, the Computer has to check out each possible move,
assigning 'goodness values' to each of them, and finally select
the one with the maximum goodness value. Let's assume that
there already exists a function Goodness() which returns the
goodness value of a particular move [We'll get to this function
later]. So, the following function should be able to decide
upon the best move:

A - the 1 Dimensional 9-length array (as in Magic Squares) which
represents the 2-D 3x3 grid.

int SelectBestMove(player) // selects a move
 // for player 'player'
{
 max = -100
 for i = 1 to 9
 if A[i] is free
 {
 mark A[i]
 value = Goodness()
 unmark A[i]
 if value > max
 {
 max = value
 best_locn = i
 }
 }
 return best_locn
}

Note: This is only the skeleton, just to show the logic. You'll
have to add some beef to check for special conditions and
prevent errors.

So, it is enough if we call the above function every time the
computer has to play. Now, the question is, how do we go
about checking the Goodness() value ??? For starters, the
function Goodness() can check if the player wins by playing
that move. So we can have a Goodness() which simply
searches for three in a line. If the function finds such a
winning line, it returns a high goodness value of, say, 128. If
it does not, it simply returns 0.

This would work, but is definitely not good enough. It is
equivalent to a child playing tic-tac-toe who simply searches
for a place to get 3 in a row, without any deeper thinking, or
future planning.

Let's try and scrutinize the way we humans play the game.
First, we try to win in the current move (The above suggestion
for Goodness() already does this). If we can't win in the
current move, we try to make it as hard as possible for the
opponent to win in the next move. Whatever we play, the
opponent is then definitely going to select the best move for
himself - in a way, he's going to compare the goodness values
of all of his possible moves, and select the best one. If you
think about it, the better this best-goodness-value that he
obtains is, the worse it is for us. Right? So, in a way, we've
got to select a move which gives him the worst best-
goodness-value. Think about it for a while.

You may not realize it, but in the above paragraph, we have
effectively given the recursive definition for the solution of
this problem. See: For each possible move we can make, we
first check if that move would make us win. (If yes, return
128). Then, we check the best-goodness-value that the
opponent gets. The better this value is, the worse ours, and
vice versa. The value of his best-goodness-value would
correspond to a value of our-goodness-value. The function
should return whatever this value of our-goodness-value is.
One simple way of calculating our-goodness-value from the
opponent's best-goodness-value is to take our-goodness-value
as the negative of his best-goodness-value. So, the higher his
is, the lower ours is. Ultimately, it's just a comparison of all
goodness values, so the negative sign won't cause any
problems. In fact, this way, if his best-goodness-value is, say,
-128, it means that our-goodness-value is +128, which is
equivalent to saying, "I am sure to win in the next move, if I
move here." Since we are using the negative-value idea, our
recursive definition of Goodness() becomes:

Goodness()
1) Check if opponent wins. If yes, return: -128.
2) For each possible next move,

get -Goodness(opponent)
3) Finally, select the best (highest) of

these values and return it.

As you may see, the above works very well, despite the
modifications. Suppose, in step 2, we select a move which is
supposed to make us win. We call Goodness(opponent). In
the new instance of Goodness, the opponent checks (in step
1) if we win. We do, so the function returns -128. Since we
are taking the negative of this value, we get +128, which is
right! You can check similarly for other possibilities. The
modification we made above requires a modification in our
SelectBestMove() function that we defined earlier. The call
to Goodness() should be changed from "value = Goodness
()" to "value = -Goodness()". We'll see about the
parameters next.

In order to toggle between the two players as we go
recursively deeper into a given move, we'll use the 'negative'
concept again. Let player = 1 denote Player1, and player = -1
denote Player2. Then, our recursive function call will be:
value = -Goodness(-player). I hope that doesn't confuse you.
Let's see the algorithm for Goodness():-

int Goodness(player)
{
 if CheckWin(-player)
 return -128

 max = -200
 for i = 1 to 9
 if A[i] is free
 {
 mark A[i]
 value = -Goodness(-player)
 unmark A[i]
 if value > max
 max = value
 }
 return max
}

As in the previous code fragment, you'll need to fine-tune
several aspects of this one, but it is generally trivial, and
depends on your data structures and such. Also note that the
function above does not recurse infinitely. Why? Because
there will come a time (around the 9th recursion) when none
of A[i] is free, which means it never enters the loop, and thus,
simply returns. (It will have to return 0 - for draw)

Okay, that takes care of most of it. But the program will still
act kind of funny. Can you guess why? The answer is not
obvious, but you may realize what's happening after you
struggle with it for a few days. Let's see what the code above
does in the following case: Suppose it is my turn, and there is
a move I can make which will get me 3 in a row. Also, there
is another move I could make which will definitely make me

win in my next move. The above code treats both these as
equivalent, since both have a goodness value of +128. So
how do we go about telling the program "The sooner the
better"? The answer naturally has to do with the goodness
value. Somehow, the 'closer' wins have to have greater
precedence. This means that the distant values have to be
reduced to a smaller fraction by the time it reaches the main
function, SelectBestMove(). One simple way to do this is:
replace the statement

 value = -Goodness(-player)

by

 value = -Goodness(-player) / 2

So, effectively, the priority of deeper instances keeps on
diminishing. The effect is that the computer selects the move
such that it wins as soon as possible.

One last mention.

Better Methods?

There are some other possibilities we haven't yet looked into,
which arguably, could be better than the logic above. You
see, we have used the 'max' method, in which the computer
selects the best possible move, which is the one with the
maximum goodness value. This is fine and correct. However,
the program also assumes that the opponent selects the best
move. As a result, the computer may not appear to play
smartly against a normal or below-average opponent.

One option available, though not guaranteed to improve all
situations, is to take the average of the opponent's goodness
value as the return value. This kind of generalizes the
unpredictability of the opponent's moves. Maybe.

Another option is the minmax method. Here, we don't use
the negative of the opponent's best goodness value. Instead,
we use his worst goodness value. Makes a lot of difference. I
haven't tried it out. If you've tried it out successfully, tell me
about it.

Exercises

First, get your tic-tac-toe program working. There's nothing
like playing against your own game. Your own baby.

1. Write a program using Recursion to play the following
game: There are 21 stones. Two players take turns picking
the stones. Each player should take at least 1 stone, and a

maximum of 4 stones at each turn. The player who picks the
last stone is the loser.

< Prev Recursion Index Next >

erw_nerve@email.com July 2000

recursion index introduction magic squares tic tac toe connect 4

optimizing recursion trees sorting equation generator other problems

home jokes programming about me resume guest book

Comments:
This page is located at http://personal.vsnl.com/erwin/tictactoe.htm

PANIC Display thank-you page Return to this page nmlkji nmlkj Submit

Recommend this page to someone?
e-mail

e-mail

