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Magic Squares
In this page, I'm going to show you the permutation-
capabilities of Recursion. Permutation means a combination 
of certain units in all possible orderings. Recursion can be 
effectively used to find all possible combinations of a given 
set of elements. This has applications in anagrams, 
scheduling and, of course, Magic Squares. And if you're 
interested, Recursion can also be used for cracking 
passwords. ;-)

 

First, what is a magic square?
A magic square is a 'matrix' or a 2-dimensional grid of 
numbers. Take the simple case of a 3x3 magic square. Here's 
one:-
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A Magic Square contains a certain bunch of numbers, in this 
case, 1..9, each of which has to be filled once into the grid. 
The 'magic' property of a Magic Square is that the sum of the 
numbers in the rows and columns and diagonals should all be 
same, in this case, 15. 

Try making a 3x3 magic square yourself. It's not that easy. If 
it was easy, try a 4x4 grid with numbers 1..16. And what 
about 5x5, 6x6...? That's where computers come in! Okay, 
now, how do we go about programming something we hardly 
understand. The answer is : brute force. The computer may 
not be smart, but it can certainly do something you would 
take months to do, and that is, pure calculations - millions 
and millions of them. To have an analogy, suppose you are 
given two identical photos. It would take you just a glance of 
the eye to agree that they're same. The computer, on the 
other hand, would compare them dot by dot, pixel by pixel, 
and then agree that they're same. In the process, both you and 
the computer accomplish the same task in pretty much the 
same time, but in very different ways. So, the answer is brute 
force.

Okay, we've got a bunch of numbers. We've got to arrange 
them in a matrix so that the sum is equal in all directions. 

4 3 8

9 5 1

2 7 6



Since we don't have a clue about any strategy, we'd just have 
to........ Try All Possibilities! Yes, and that's what a computer 
is meant to do - brute force.

Okay, try figuring it out yourself at this stage. You know 
everything there is to know - the concept of magic squares, 
the need to check all possibilities, and that the answer lies in 
recursion. To help ease the complexity, you can make a 
simple function (besides the recursive function) to check if a 
square is magical. So, basically, you've got to try all 
possibilities and permutations, and for each one, you have to 
call the function to test if the square is magical. I seriously 
suggest you stop at this point, and brainstorm to extremes. 
Better yet, just finish the program. It isn't that tough.

 

Given up? Fine. Having said all that I said, only the heart of 
the program is left to explain. The question boils down to, 
how do we accomplish permuting a set of numbers (or 
objects) using recursion? For simplicity sake, we work with a 
1-dimensional array. In the case of a 3x3 square, let's have a 
9-length single-dimensional array. So we have numbers 1 to 
9 and 9 locations to put them into. The permutations would 
be:-

123456789 
123456798 
123456879 
123456897 
123456978 
123456987 
.... 
.... 
987654321    

Conversion from single to 2-D array is fairly simple, and may 
be done within the magic-testing function that we shall call 
'TestMagic'. 

As a preliminary exercise, try to program the following 
sequence...

111,112,113,121,122,123,131,132,133, 
211,212,213,221,222,223,231,232,233, 
311,312,313,321,322,323,331,332,333.  

...using For loops.

Answer: It's as simple as:-

for i = 1 to 3 
    for j = 1 to 3 
        for k = 1 to 3 
            print i,j,k 

Now, try it using recursion. 



 

Answer: Think of it this way: i loops from 1 to 3. For every 
value of i, j loops from 1 to 3. For every value of j, k loops 
from 1 to 3. For every value of k, the values are displayed. 
So, basically, these three loops perform very similar 
functions, which can therefore be reduced to a single 
recursive function with a single loop. 

void Func(n) 
{ 
    for i = 1 to 3 
    { 
       A[n] = i 
       if (n<3) 
            Func(n+1) 

else
    print A[1],A[2],A[3]

    } 
} 

A[] is simply an array of integers. The function should be 
invoked with initial n value as 1, i.e., Func(1). Trace the 
program to figure out the output. 

For each pass through the loop, the function's child's loop is 
completely executed, by means of the recursive call. [A child
of a given instance is the instance that it creates and calls.] 

Just in order to confuse you even more, the same function can 
be written in this way:-

void Func(n) 
{ 
    if (n<4)
    { 
        for i = 1 to 3 
        { 
            A[n] = i 
            Func(n+1) 
        } 
    } 
    else

print A[1],A[2],A[3]
} 

Anyway, coming back to our magic squares and our 9-length 
array which is to be permuted....
We can easily adopt the above functions, with one difference: 
the numbers should not repeat. If the numbers were allowed 
to repeat, we could easily write: 

void Permute(n) 
{ 
    for i = 1 to 9 
    { 
        A[n] = i 
        if (n<9) 
            Permute(n+1) 
        else 

    TestMagic( )
    } 



} 

A[] is the 9-length array. 
The function should be called with n=1 initially. Function 
TestMagic checks whether the square represented by the 
array is magical, and displays it if it is so.

However, we must not allow repetition, as per the rules and 
regulations of magic square authorities and environmental 
agencies worldwide. There could be several ways to perform 
this check, and it is left open to you. What I did was: I kept 
another 9-length array, which contained information about 
which number was used, and which was not. 
E.g.: Say B[] is the extra array. If B[2]=0, then, number 2 is 
still free. If B[2]=1, then, number 2 is already used. 
Whenever we 'go to' a recursive call and 'come back' from a 
recursive call, we should update this array. One possible 
algorithm could be:-

 

void Permute(n) 
{ 
    for i = 1 to 9 
        if B[i]=0 // if i is free 
        { 
            B[i]=1 
            A[n]=i    
            if n<9 
                Permute(n+1)     //recurse 
            else 

TestMagic( )    //at the end 
            B[i]=0 
        } 
}

Note the way I set and reset the value of B[i]. For all deeper 
recursive instances of the function, value of B[i] is 1. And 
when we come back, we undo this change. Strictly speaking, 
the same concept is used while changing the value of variable 
n. The value of n sent to the child instance is different from 
the value of n in the current instance. And upon returning 
from the child instance, the value of n is reset to its old value. 
(This is taken care of automatically by the passing of 
parameters between the calls, so we don't have to bother 
explicitly changing the value of n.)

The rest is left to you. Try the program, and taste the results 
yourself. There are totally 8 solutions for the 3x3 matrix with 
numbers 1..9. Did you get them all? 

We have worked out this problem by realizing that we need to 
find all permutations of the numbers 1..9, and for each 
permutation, check if it satisfies the condition. There's 
another way of looking at the same thing, which is a common 
viewpoint when talking about recursion. It is called 
'BackTracking'. In effect, what our program does is, when it 
finds (at the 9th recursion) that a square is not magical (say), 



 

it 'goes back' to the previous instance of the function, and 
even more back if needed. This is called BackTracking and is 
used in all recursive-problem-solving programs. 

Even if you own a 800MHz m/c, you may have noticed that 
the calculation took at least a few seconds, maybe longer. 
This is because the algorithm is not very efficient. It is 
possible to get all the results in under a second on any
machine, if we tweak this algorithm here and there. That's 
what we'll do next.

Tweak

If you observe (and imagine) a bit... okay, more than just a 
bit.... you will realize that a LOT of the possibilities we test 
are actually quite useless. The first state is: 

or, 1 2 3 4 5 6 7 8 9. 

Now, the begins by permuting 8-9, then 7-8-9, then 6-7-8-9... 
which all takes time. All these are useless until we start 
permuting the top row, since 1+2+3=6, but we need 15. Get 
it? It's going to take a LOT of permutations before we finally 
backtrack to 3,2 and 1, which remain as sum 6 all this while. 
So, this 1-2-3 combination really sucks, and we should never 
allow it. 

I wouldn't be describing this problem if I didn't know the 
answer, so here it is: While filling the numbers, at every row, 
we check if the sum is 15. So, before we go on to the second 
row (or the 4th element in our 1-D array) we check the sum of 
the first row - if it isn't 15, go back and permute... until the 
sum is 15. So, now the first row has a sum 15 (done very 
quickly since we permute only 3 locations) and all those 
useless permutations of the other two rows are not attempted. 
The same should happen for the second row, which saves 
some time, but not as much as that for the first row. Finally, 
after all 9 elements are inserted, check the columns and 
diagonals. 

Actually what happens is, if the sum of the first row elms is 
not 15, it backtracks until the sum is 15. If the sum is now 15, 
it 'goes forward' and checks the second row for sum 15. If 
second row sum is not 15, it backtracks to try to get the sum 
as 15. If all permutations within row 2 are complete, it 
backtracks to row 1... The following function checks the sum 
at every row.

void Permute(n) 

1 2 3

4 5 6

7 8 9



{ 
    for i = 1 to 9 
        if B[i]=0     // if i is free 
        { 
            B[i]=1 
            A[n]=i    
            if (n % 3 = 0) // if n is div by 3 
            { 
                if RowSum() = 15 
                { 
                    if n<9 
                        Permute(n+1)    
                    else   // at the end 
                        TestMagic() 
                } 
            } 
            else 
                Permute(n+1) //recurse 
            B[i]=0 
        } 
} 

 

Tweak 2

Even the above program is a bit wasteful. Consider one of the 
cases in which the above program successfully fills the entire 
9 locations (The row sums are all 15):-

This is by no means a magical square. Only the row sums are 
proper. What about the column sums? Look at column 1. Isn't 
it a little familiar? Right, we're back to the same old 
philosophies - this time, for the columns. A little thinking (for 
a guy like Einstein) or a lot of it (for you and me) will 
convince you that we also need to check and maintain column
sums (as 15) along the way. So, we need to check both rows 
and columns. A little More thinking will convince you 
(poorly) that we need to fill the rows and columns 
alternatively to maximize efficiency (and confusion). At this 
point, keep in mind one of the greater truths that 
programmers (like you and me) live by: "The more 
complicated your program, the more you are respected." 
There are at least 2 good ways to alternate rows and columns. 

The first way: 

1 5 9

2 6 7

3 4 8

1 2 3

1 a b c

2 d e f

3 g h i



 

row1, column1, row2, column2, row3,column3. 
or, 
a-b-c-d-g-e-f-h-i. 
At c, check row1 sum. At g, check column1 sum. At f, check 
row 2 sum. At h, check column2 sum. At i check row3 and 
column3 sum and diagonals as well. So, with a very few 
'fillings' we can extract the solutions. 

The second way: In a spiral pattern: 
row1,column3, row3(reverse), column1(rev), row 2, column2 
or, 
a-b-c-f-i-h-g-d-e. 
At c, check row1. At i, check column3. At g, check row3. At 
d, check column1. At e, check row2, column2 and diagonals. 
And, there you have it. The solutions will pop out in a 
second. 

 

Exercises

You should be able to solve these problems:-

1. Write a function using Recursion to display all anagrams 
of the word 'RECURSION'.

2. Write a function using Recursion to display all anagrams 
of any string entered by the user.

3. Write a function using Recursion to display all anagrams 
of a string entered by the user, in such a way that all its 
vowels are located at the end of every anagram. (E.g.: 
Recursion => Rcrsneuio, cRsnroieu, etc.) Optimize it.

4. Write a function using Recursion to do the following: You 
have 20 different cards. You have only 7 envelopes. You can 
therefore send only 7 cards. Display all possible ways you 
can fill the 7 envelopes. (Every card is different)

5. Same as above, except: Of the 20 cards, 5 are identical 
birthday cards, and 7 others are identical anniversary cards. 
Find all permutations, without repetitions. (Swapping two 
identical cards doesn't create a new permutation.) 

6. Write a function using Recursion to crack a password. The 
password is of unknown length (maximum 10) and is made 
up of capital letters and digits. (Store the actual password in 
your program, just for checking whether the string currently 
obtained is the right password.)

7. Write a function using Recursion to do the following: You 
are the manager in a small factory. You have 7 workers and 7 
jobs to be done. Each worker is assigned one and only one 
job. Each worker demands different pay for each job. (E.g.: 



Worker Sam demands $10 for welding, $15 for carpentry, 
etc. Worker Joe demands $12 for welding, $5 for carpentry, 
etc.) Find the job-assignment which works out cheapest for 
you.
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