
connect 4

Connect 4
(also know as: Plot 4, Go 4 it)

This is a game very similar to Tic Tac Toe, but probably not
as famous. It offers many more possibilities of games than
the very restricted Tic-Tac-Toe. This introduces new
philosophies into our world of Recursion. Fasten your seat-
belts for a mind-blazing session into the intricacies of one of
the best games I've known!

< Prev Recursion Index Next >

The Game

The actual game is played on a 7x7 grid rack. The rack is
placed vertically, with an opening at the top. The players take
turns dropping their coins into one of the 7 columns. The
dropped coin rests on top of whatever was dropped into the
same column earlier. Coins may not be dropped into a full
column, ie, a column filled with 7 coins. The objective of the
game is to get 4 of the player's coins in a continuous line,
either horizontally, vertically or diagonally. If all 49 cells are
filled without a winner, the game is drawn.

Eg: yellow wins in the following game.

The Program

As you may already have realised, the program for this game
should be very similar to that for Tic-Tac-Toe, as discussed
in the previous section. Except that we don't have to check
each cell at every move - just one in each column, i.e., there

are 7 possible moves, not 49, at the start of the game.

You could proceed as we did with tic tac toe, checking all
possible moves, and recursing till a depth at which there are
no further possible moves.

You could try that... to find out the hard way about the
limitations of Recursion. Let me explain. Let's go back to
the Tic Tac Toe program. Assume each call to the CheckWin
() function takes t seconds (possibly t = 0.0001). Consider
the first move. There are 9 possibilities (which means 9 calls
to the function). For each of these possibilities, there are 8
possibilities for the next move. For each of the 8, there are 7
further possibilities, and so on.
Total time taken for the first move (approxiamately) = (9 x 8
x 7 x 6 x 5 x 4 x 3 x 2 x 1) x t
which is, 9! x t.
9! = 362,880
9! x t = 36 seconds, assuming t = 0.0001 sec.s

Okay, forget about that. Now, let's see what happens if we do
the same thing over here in Connect 4. Although incorrect
technically, it is fair to assume there are 7 possibilities at
every move, just for the sake of calculation [It is incorrect
since, at some point, the columns start getting filled, and
hence possibilities reduce]. Now, suppose the function which
checks for a win takes some t seconds (t=0.0001). What
happens in the first move? There are 7 possibilities. For each
of these, there are 7 more possibilities... and so on 49 times!

So, the total time taken = (7 raised to 49) x t, which is... a big
number. Too big.

Let us not check ALL possibilities at every move. Instead, let
us just check the moves up to a depth of say, 5. In other
words, we'll calculate (for each of our 7 possible moves) the
opponent's 7 possible moves, who'll check for each of his 7
possible moves, our 7 possible moves,.... 5 times. In other
words, the number of times the CheckWin() function is
called is:

7 raised to 5 = 16807

Let's assume this takes just 1 second. Now, let's increase the
recursive depth by 1. Number of times the CheckWin()
function is called is now: 7 raised to 6
Time taken (depth 6) = 7 seconds

Let's again increase recursive depth by 1.
Time taken (depth 7) = 49 seconds

and again...
Time taken (depth 8) = 6 min.s

and again...
Time taken (depth 9) = 42 min.s

and so on... A depth of 12 will require a time of more than 9
days. A depth of 16 will require 63 years.... So let's forget
about a depth of 49, shall we?

Limitations of Recursion

I guess it is obvious what the problem is after the evaluation
above. In Mathematics, we would call the algorithms
exponential. The time taken for each successive value of
depth increases exponentially. This is the limitation of
recursion which destroys its usefulness prematurely. It forces
the algorithms to recurse to only a small depth. Even the
almost exponential increase in computer speed nowadays
hardly offsets the exponential increase in the amount of time
required for an increased depth.

Back to Connect 4.

So, we're going to limit the depth of recursion. Or maybe we
can provide the user with the choice for various depth levels,
corresponding to increasing difficulty levels. It is obvious that
the greater the depth the better the move, since the computer
can look deeper into a given move, and look further 'ahead'.

The basic algorithm would be:-

int Goodness(player, depth)
{
 if CheckWin(-player)
 return -128
 if depth=0
 return 0

 max = -200
 for i = 1 to 7
 if column i is not full
 {
 drop coin into column i
 value = -Goodness(-player,depth-1) / 2
 remove coin from column i
 if value > max
 max = value
 }
 return max
}

The depth variable mechanism makes sure the recursive
descent does not continue beyond a certain value. Assuming a
depth of 5, the function should first be called by :

value = -Goodness(-player,5)

The rest is very similar to Tic-Tac-Toe.

Note that the time taken for any move is t x (7 raised to
something). Therefore, it is very important that t be as small
as possible. t represents the time taken for the CheckWin()
function. This function is going to be executed some 7-raised-
to-something times. So, this particular function should be as
efficient (fast) as possible. For instance, the CheckWin()
function should not check every row and column and diagonal
for a possible win. Instead, it should check only the row and
column and diagonals in which the last coin played resides.
Further improvements are possible.

< Prev Recursion Index Next >

erw_nerve@email.com July 2000

recursion index introduction magic squares tic tac toe connect 4

optimizing recursion trees sorting equation generator other problems

home jokes programming about me resume guest book

Comments:
This page is located at http://personal.vsnl.com/erwin/connect4.htm

PANIC Display thank-you page Return to this page nmlkji nmlkj Submit

Recommend this page to someone?
e-mail

e-mail

