
m a g i c

Magic Squares
In this page, I'm going to show you the permutation-
capabilities of Recursion. Permutation means a combination
of certain units in all possible orderings. Recursion can be
effectively used to find all possible combinations of a given
set of elements. This has applications in anagrams,
scheduling and, of course, Magic Squares. And if you're
interested, Recursion can also be used for cracking
passwords. ;-)

First, what is a magic square?
A magic square is a 'matrix' or a 2-dimensional grid of
numbers. Take the simple case of a 3x3 magic square. Here's
one:-

< Prev Recursion Index Next >

A Magic Square contains a certain bunch of numbers, in this
case, 1..9, each of which has to be filled once into the grid.
The 'magic' property of a Magic Square is that the sum of the
numbers in the rows and columns and diagonals should all be
same, in this case, 15.

Try making a 3x3 magic square yourself. It's not that easy. If
it was easy, try a 4x4 grid with numbers 1..16. And what
about 5x5, 6x6...? That's where computers come in! Okay,
now, how do we go about programming something we hardly
understand. The answer is : brute force. The computer may
not be smart, but it can certainly do something you would
take months to do, and that is, pure calculations - millions
and millions of them. To have an analogy, suppose you are
given two identical photos. It would take you just a glance of
the eye to agree that they're same. The computer, on the
other hand, would compare them dot by dot, pixel by pixel,
and then agree that they're same. In the process, both you and
the computer accomplish the same task in pretty much the
same time, but in very different ways. So, the answer is brute
force.

Okay, we've got a bunch of numbers. We've got to arrange
them in a matrix so that the sum is equal in all directions.

4 3 8

9 5 1

2 7 6

Since we don't have a clue about any strategy, we'd just have
to........ Try All Possibilities! Yes, and that's what a computer
is meant to do - brute force.

Okay, try figuring it out yourself at this stage. You know
everything there is to know - the concept of magic squares,
the need to check all possibilities, and that the answer lies in
recursion. To help ease the complexity, you can make a
simple function (besides the recursive function) to check if a
square is magical. So, basically, you've got to try all
possibilities and permutations, and for each one, you have to
call the function to test if the square is magical. I seriously
suggest you stop at this point, and brainstorm to extremes.
Better yet, just finish the program. It isn't that tough.

Given up? Fine. Having said all that I said, only the heart of
the program is left to explain. The question boils down to,
how do we accomplish permuting a set of numbers (or
objects) using recursion? For simplicity sake, we work with a
1-dimensional array. In the case of a 3x3 square, let's have a
9-length single-dimensional array. So we have numbers 1 to
9 and 9 locations to put them into. The permutations would
be:-

123456789
123456798
123456879
123456897
123456978
123456987
....
....
987654321

Conversion from single to 2-D array is fairly simple, and may
be done within the magic-testing function that we shall call
'TestMagic'.

As a preliminary exercise, try to program the following
sequence...

111,112,113,121,122,123,131,132,133,
211,212,213,221,222,223,231,232,233,
311,312,313,321,322,323,331,332,333.

...using For loops.

Answer: It's as simple as:-

for i = 1 to 3
 for j = 1 to 3
 for k = 1 to 3
 print i,j,k

Now, try it using recursion.

Answer: Think of it this way: i loops from 1 to 3. For every
value of i, j loops from 1 to 3. For every value of j, k loops
from 1 to 3. For every value of k, the values are displayed.
So, basically, these three loops perform very similar
functions, which can therefore be reduced to a single
recursive function with a single loop.

void Func(n)
{
 for i = 1 to 3
 {
 A[n] = i
 if (n<3)
 Func(n+1)

else
 print A[1],A[2],A[3]

 }
}

A[] is simply an array of integers. The function should be
invoked with initial n value as 1, i.e., Func(1). Trace the
program to figure out the output.

For each pass through the loop, the function's child's loop is
completely executed, by means of the recursive call. [A child
of a given instance is the instance that it creates and calls.]

Just in order to confuse you even more, the same function can
be written in this way:-

void Func(n)
{
 if (n<4)
 {
 for i = 1 to 3
 {
 A[n] = i
 Func(n+1)
 }
 }
 else

print A[1],A[2],A[3]
}

Anyway, coming back to our magic squares and our 9-length
array which is to be permuted....
We can easily adopt the above functions, with one difference:
the numbers should not repeat. If the numbers were allowed
to repeat, we could easily write:

void Permute(n)
{
 for i = 1 to 9
 {
 A[n] = i
 if (n<9)
 Permute(n+1)
 else

 TestMagic()
 }

}

A[] is the 9-length array.
The function should be called with n=1 initially. Function
TestMagic checks whether the square represented by the
array is magical, and displays it if it is so.

However, we must not allow repetition, as per the rules and
regulations of magic square authorities and environmental
agencies worldwide. There could be several ways to perform
this check, and it is left open to you. What I did was: I kept
another 9-length array, which contained information about
which number was used, and which was not.
E.g.: Say B[] is the extra array. If B[2]=0, then, number 2 is
still free. If B[2]=1, then, number 2 is already used.
Whenever we 'go to' a recursive call and 'come back' from a
recursive call, we should update this array. One possible
algorithm could be:-

void Permute(n)
{
 for i = 1 to 9
 if B[i]=0 // if i is free
 {
 B[i]=1
 A[n]=i
 if n<9
 Permute(n+1) //recurse
 else

TestMagic() //at the end
 B[i]=0
 }
}

Note the way I set and reset the value of B[i]. For all deeper
recursive instances of the function, value of B[i] is 1. And
when we come back, we undo this change. Strictly speaking,
the same concept is used while changing the value of variable
n. The value of n sent to the child instance is different from
the value of n in the current instance. And upon returning
from the child instance, the value of n is reset to its old value.
(This is taken care of automatically by the passing of
parameters between the calls, so we don't have to bother
explicitly changing the value of n.)

The rest is left to you. Try the program, and taste the results
yourself. There are totally 8 solutions for the 3x3 matrix with
numbers 1..9. Did you get them all?

We have worked out this problem by realizing that we need to
find all permutations of the numbers 1..9, and for each
permutation, check if it satisfies the condition. There's
another way of looking at the same thing, which is a common
viewpoint when talking about recursion. It is called
'BackTracking'. In effect, what our program does is, when it
finds (at the 9th recursion) that a square is not magical (say),

it 'goes back' to the previous instance of the function, and
even more back if needed. This is called BackTracking and is
used in all recursive-problem-solving programs.

Even if you own a 800MHz m/c, you may have noticed that
the calculation took at least a few seconds, maybe longer.
This is because the algorithm is not very efficient. It is
possible to get all the results in under a second on any
machine, if we tweak this algorithm here and there. That's
what we'll do next.

Tweak

If you observe (and imagine) a bit... okay, more than just a
bit.... you will realize that a LOT of the possibilities we test
are actually quite useless. The first state is:

or, 1 2 3 4 5 6 7 8 9.

Now, the begins by permuting 8-9, then 7-8-9, then 6-7-8-9...
which all takes time. All these are useless until we start
permuting the top row, since 1+2+3=6, but we need 15. Get
it? It's going to take a LOT of permutations before we finally
backtrack to 3,2 and 1, which remain as sum 6 all this while.
So, this 1-2-3 combination really sucks, and we should never
allow it.

I wouldn't be describing this problem if I didn't know the
answer, so here it is: While filling the numbers, at every row,
we check if the sum is 15. So, before we go on to the second
row (or the 4th element in our 1-D array) we check the sum of
the first row - if it isn't 15, go back and permute... until the
sum is 15. So, now the first row has a sum 15 (done very
quickly since we permute only 3 locations) and all those
useless permutations of the other two rows are not attempted.
The same should happen for the second row, which saves
some time, but not as much as that for the first row. Finally,
after all 9 elements are inserted, check the columns and
diagonals.

Actually what happens is, if the sum of the first row elms is
not 15, it backtracks until the sum is 15. If the sum is now 15,
it 'goes forward' and checks the second row for sum 15. If
second row sum is not 15, it backtracks to try to get the sum
as 15. If all permutations within row 2 are complete, it
backtracks to row 1... The following function checks the sum
at every row.

void Permute(n)

1 2 3

4 5 6

7 8 9

{
 for i = 1 to 9
 if B[i]=0 // if i is free
 {
 B[i]=1
 A[n]=i
 if (n % 3 = 0) // if n is div by 3
 {
 if RowSum() = 15
 {
 if n<9
 Permute(n+1)
 else // at the end
 TestMagic()
 }
 }
 else
 Permute(n+1) //recurse
 B[i]=0
 }
}

Tweak 2

Even the above program is a bit wasteful. Consider one of the
cases in which the above program successfully fills the entire
9 locations (The row sums are all 15):-

This is by no means a magical square. Only the row sums are
proper. What about the column sums? Look at column 1. Isn't
it a little familiar? Right, we're back to the same old
philosophies - this time, for the columns. A little thinking (for
a guy like Einstein) or a lot of it (for you and me) will
convince you that we also need to check and maintain column
sums (as 15) along the way. So, we need to check both rows
and columns. A little More thinking will convince you
(poorly) that we need to fill the rows and columns
alternatively to maximize efficiency (and confusion). At this
point, keep in mind one of the greater truths that
programmers (like you and me) live by: "The more
complicated your program, the more you are respected."
There are at least 2 good ways to alternate rows and columns.

The first way:

1 5 9

2 6 7

3 4 8

1 2 3

1 a b c

2 d e f

3 g h i

row1, column1, row2, column2, row3,column3.
or,
a-b-c-d-g-e-f-h-i.
At c, check row1 sum. At g, check column1 sum. At f, check
row 2 sum. At h, check column2 sum. At i check row3 and
column3 sum and diagonals as well. So, with a very few
'fillings' we can extract the solutions.

The second way: In a spiral pattern:
row1,column3, row3(reverse), column1(rev), row 2, column2
or,
a-b-c-f-i-h-g-d-e.
At c, check row1. At i, check column3. At g, check row3. At
d, check column1. At e, check row2, column2 and diagonals.
And, there you have it. The solutions will pop out in a
second.

Exercises

You should be able to solve these problems:-

1. Write a function using Recursion to display all anagrams
of the word 'RECURSION'.

2. Write a function using Recursion to display all anagrams
of any string entered by the user.

3. Write a function using Recursion to display all anagrams
of a string entered by the user, in such a way that all its
vowels are located at the end of every anagram. (E.g.:
Recursion => Rcrsneuio, cRsnroieu, etc.) Optimize it.

4. Write a function using Recursion to do the following: You
have 20 different cards. You have only 7 envelopes. You can
therefore send only 7 cards. Display all possible ways you
can fill the 7 envelopes. (Every card is different)

5. Same as above, except: Of the 20 cards, 5 are identical
birthday cards, and 7 others are identical anniversary cards.
Find all permutations, without repetitions. (Swapping two
identical cards doesn't create a new permutation.)

6. Write a function using Recursion to crack a password. The
password is of unknown length (maximum 10) and is made
up of capital letters and digits. (Store the actual password in
your program, just for checking whether the string currently
obtained is the right password.)

7. Write a function using Recursion to do the following: You
are the manager in a small factory. You have 7 workers and 7
jobs to be done. Each worker is assigned one and only one
job. Each worker demands different pay for each job. (E.g.:

Worker Sam demands $10 for welding, $15 for carpentry,
etc. Worker Joe demands $12 for welding, $5 for carpentry,
etc.) Find the job-assignment which works out cheapest for
you.

< Prev Recursion Index Next >

erw_nerve@email.com July 2000

recursion index introduction magic squares tic tac toe connect 4

optimizing recursion trees sorting equation generator other problems

home jokes programming about me resume guest book

Comments:
This page is located at http://personal.vsnl.com/erwin/magic.htm

PANIC Display thank-you page Return to this page nmlkji nmlkj Submit

Recommend this page to someone?
e-mail

e-mail

